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This is a self-contained discussion of a recently proposed theoretical approach for off-resonance tunneling
transport. The final result is an analytic formula for the asymptotic tunneling conductance involving the overlap
of three well-defined physical quantities that can be easily evaluated with the standard electronic structure
codes. We argue that the formula can be used to gain fresh insight into the tunneling transport characteristics
of various systems. The formalism is applied to molecular devices consisting of planar phenyl chains con-
nected to gold electrodes via amine linkers.
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Exciting new developments in molecular transport have
lead to accurate single molecule measurements. There exist
now large amounts of high-quality experimental data and the
measurements coming from different experimental groups
seem to agree with each other.1–6 We are particularly inter-
ested in the data for devices involving molecules made of
several repeating units or monomers such as alkyl, phenyl,
and acene chains of various lengths. For these devices, we
develop a semianalytic theory of tunneling transport, which
is an exact expression for the asymptotic tunneling conduc-
tance that takes into account the physical properties of the
devices at the atomic and molecular levels.

The signature of the tunneling transport is the exponential
dependence, G=Gce

−�N, of the conductance G on the num-
ber of monomers N. In the past, the off-resonant tunneling
transport was described and understood in terms of effective
electrons tunneling through square barriers.7 Such treatment
works well as long as the effective-mass approximation re-
mains valid at the Fermi level. However, many systems, par-
ticularly organic chains, display large insulating gaps and flat
bands and very often the effective-mass approximation for
these systems fails when one moves away from the band
edges. The modern theory of tunneling transport8–11 connects
the tunneling exponent � to the complex band structure of
the chains, an approach that goes well beyond the effective-
mass treatments. In a past publication,12 we contributed to
the picture by deriving an expression for the contact conduc-
tance Gc. The final analytic formula for the asymptotic tun-
neling conductance involves an overlap of three well-defined
physical quantities that can be obtained from any standard
electronic structure calculation. Since the formula involves
physical quantities familiar to most electronic structure prac-
titioners, it can be easily evaluated regardless of the adopted
electronic structure code.

Our original paper, Ref. 12, dealt with the general prob-
lem of charge transport in periodic chains, touching several
additional aspects besides the off-resonant tunneling trans-
port. That level of generality prevented us from elaborating
on several issues that we now think are important for under-
standing our results. Since the publication of Ref. 12, we
were able to greatly simplify the original, heavily mathemati-
cal derivations, making them accessible to a wider reader-
ship. This is important because the off-resonant tunneling

transport theory introduced in Ref. 12 has important practical
implications as it can lead to the design of better sensors
or tunneling magnetoresistance devices and to a more accu-
rate theory of STM imaging. We were also able to de-
rive a formally exact expression of the linear conductance
within the time-dependent current-density-functional theory
�TDCDFT�, which provides a better understanding of the
current approximations used in the most ab initio transport
calculations. We have also completed an efficient atomistic
numerical implementation of the formalism using real-space
grids as well as plane-wave representations and verified that
the two give the same answers.

Given all the above, we decided to write the present self-
contained paper focusing entirely on, what we call, the mod-
ern theory of the off-resonant tunneling transport. We review
here the theoretical derivations and present an ab initio cal-
culation of the tunneling transport for phenyl chains. We paid
special attention to the presentation, greatly expanding the
parts that involve material less familiar to a wider audience.

The formalism was recently applied to molecular devices
involving amine-linked alkyl chains.13 The theoretical results
were in good agreement with the experimental values ob-
tained by two independent experimental groups.2,4 The
agreement came as a surprise since the general consensus
was that density-functional theory �DFT� calculations over-
estimate the conductance typically by one order of magni-
tude or more. Our calculations were later confirmed in Ref.
14 and now it is clear that the large gap of the alkyl chain
and the flat shape of the relevant complex band largely con-
tribute to the observed agreement. In this paper we present
another test of our theory by applying it to phenyl chains,
which were experimentally characterized in Ref. 1.

Compared to the alkyl chains, the phenyl chains display a
much smaller insulating gap and parabolic complex bands
that are quite different from the alkyls’ flat complex bands.15

For tunneling transport, these are major differences. Because
of this, the onset of the asymptotic tunneling regime is ex-
pected to happen for longer phenyl chains and the tunneling
conductance is expected to be more sensitive to the molecu-
lar level alignment relative to the Fermi energies of the de-
vices. Also, because of the slower exponential decay of the
evanescent tunneling channels, one expects the tunneling
conductance to be less localized near the contacts, therefore

PHYSICAL REVIEW B 80, 035124 �2009�

1098-0121/2009/80�3�/035124�12� ©2009 The American Physical Society035124-1

http://dx.doi.org/10.1103/PhysRevB.80.035124


more sensitive to the structure and position of the deeper
gold layers in the leads. All these statements will be quanti-
fied later in the paper.

DFT calculations for devices containing one phenyl ring
were carried out in Ref. 16. The theoretical values for con-
ductance reported in this study were about seven times larger
than the experimental values from Ref. 1. Later, one of the
authors reported additional theoretical values,17 for chains
containing two and three phenyl rings, and the difference
between these new values and the experimental values from
Ref. 1 was roughly the same. Our calculations show a similar
trend when compared with the experiment and, like these
previous studies, we conclude that the difference is mainly
due to the imprecise molecular level alignment steaming
from the shortcomings of the present DFT approximations.

When the experimental tunneling conductance was plot-
ted against the number of monomers,1 the data for one, two,
and three phenyl rings aligned on a straight line �when plot-
ted in a linear logarithmic scale�, and that suggested that the
asymptotic tunneling regime was reached even for one
monomer.1 In contrast, we find that phenyl chains enter the
asymptotic tunneling regime only when the number of
monomers becomes larger or equal to three. Therefore, we
feel that the tunneling properties of these systems are not
completely understood at the present time and measurements
on chains with more than three monomers would be useful to
further elucidate this issue.

I. TRANSPORT: GENERAL CONSIDERATIONS

We consider a charge transport experiment involving a
device made of a molecular chain attached to metallic leads
�see Fig. 1�. The system is driven by a small time oscillating
electric field E1

ext�r�ei�t, whose effects are treated in the
linear-response regime. The dc regime is obtained by letting
the frequency of the oscillation go to zero. The existence of
a steady state is implicitly assumed.

Within the time-dependent current-density functional
theory and linear-response regime, the current density is
given by18,19

j�r,�� =� �̂KS�r,r�;��E1
eff�r�,��dr�, �1�

where �̂KS is the equilibrium Kohn-Sham conductivity ten-
sor. A local current-density approximation expression for
E1

eff�r ,�� is given in Ref. 19

E1
eff =

1

e
� �1

ext +
1

e
� �1

HXC + E1
dyn, �2�

where �1
HXC is the linearized Hartree-exchange-correlation

potential of the equilibrium DFT and E1
dyn is the dynamical

part of E1
eff, given by E1

dyn=− 1
en0

� �̂, with �̂ being the vis-
coelastic stress tensor and n0 being the equilibrium electron
density. In the linear regime

� dr��̂KS�r,r��E1
dyn�r��

=� dr�� dr��̂KS�r,r��F̂�r�,r��j�r�� , �3�

where

F���r,r�� � ��E1�
dyn�r�

�j��r��
�

�1
ext=0

. �4�

F̂�r ,r�� is understood as a matrix with elements F���r ,r��
and matrix multiplication is understood between �̂ and F̂
and between F̂ and j. This leads to

j�r� =� dr�� dr��1 − �̂KS � F̂�−1�r,r��

	 �̂KS�r�,r�� � �ad�r�� , �5�

which is an random-phase-approximation-type expression
for the current density. The star means matrix multiplication
with respect to all indices, including the spatial coordinates r
and r�. Here

�ad�r�� = �1
ext + �1

HXC �6�

is the driving potential plus the adiabatic response of the
electrons. The net current flowing through the device is given
by

I = �



dS� dr�� dr��1 − �̂KS � F̂�−1�r,r��

	 �̂KS�r�,r�� � �ad�r�� , �7�

where 
 is an arbitrary transversal section. The potential
drop that is measured by a voltmeter attached to the two ends
of the device is given by20

�� = ��ext + �1
H�+� − ��ext + �1

H�−�, �8�

and the linear conductance is defined as G= I
�� . Note that the

screening also contributes to the potential drop. Here, �1
H is

the Hartree potential corresponding to the density perturba-
tion n1=− 1

i� � j.

A. An exact expression for linear conductance

We now show that �� can be pulled out of the compli-
cated integrals in Eq. �7�. For this, let us restrict the integral
over dr� in Eq. �7� to a volume between two distant sections

− and 
+. We will later take these surfaces to infinity. Now,
because

FIG. 1. �Color online� Illustration of a typical device considered
in this paper. The figure indicates the unit cell that is repeated pe-
riodically to obtain the periodic potential V0. It also defines the
length L of the chain.
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�
�

�����
KS�r,r�� = �

�

������
KS�r,r�� = 0, �9�

we have

�̂KS�r�,r�����ad�r�� = ���̂KS�r�,r���ad�r�� , �10�

and we can transform the integral over r� in Eq. �7� in a
surface integral

I = �



dS� dr�	�

+

dS� − �

−

dS�

	 �1 − �̂KS � F̂�−1�r,r���̂KS�r�,r���ad�r�� . �11�

We now chose the sections 
 to be isosurfaces of �ad in
which case

I = �



dS� dr�	�+
ad�


+

dS� − �−
ad�


−

dS�

	 �1 − �̂KS � F̂�−1�r,r���̂KS�r�,r�� . �12�

But once we pulled the potential out, the surface integrals no
longer depend on the shape and position of the surfaces, a
fact that follows from the property in Eq. �9�. Therefore, we
can deform 
 into one single surface 
� to obtain

I = ��ad�



dS� dr��

�

dS�

	 �1 − �̂KS � F̂�−1�r,r���̂KS�r�,r�� . �13�

At this point, let us write the explicit expression of �ad

�ad�r� = �1
ext�r� +� dr�

n1�r��
�r − r��

+� dr���vXC�r�
�n�r��

�
�1

ext=0
n1�r�� . �14�

The density n1 is localized near the junction, but its decay
away from the junction can be rather slow. Due to the long
range of the Coulomb kernel, the Hartree potential will take
finite values at � and will contribute to ��ad. The contri-
bution from the xc part was discussed in Ref. 21. Here, it
was pointed out that the common density functionals use
semilocal exchange-correlation potentials in which case the
kernel �vxc�r� /�n�r�� decays extremely fast with the separa-
tion �r−r��, and therefore, the last integral in Eq. �14� will
vanish when r is taken at �. The conclusion is that ��ad is
in fact the potential drop measured by a voltmeter �see Eq.
�8��.

However, in Ref. 21 it was also pointed out that function-
als like those involving exact exchange lead to kernels
�vXC�r� /�n�r�� slowly decaying with �r−r��, in which case
the last integral in Eq. �14� will take finite values when r is
taken at �. In this case, we have to treat �1

XC as we treated
E1

dyn, in which case F���r ,r�� has to be redefined as

F���r,r�� � ���E�
dyn + ���1

XC��r�
�j��r��

�
�1

ext=0
. �15�

This expression has to be computed at finite frequencies
first, where one will use the relation n1= −1

i� � j, and then the
limit �→0 has to be considered. Of course, in this case one
can no longer use the local approximation of Edyn given in
Ref. 19. In either case, we arrive at the following formally
exact expression of the linear conductance

G =� dr�� dr�� ��1 − �̂KS � F̂�−1 � �̂KS�zz�r�,z;r�� ,z�� .

�16�

Here, r� and r�� denote the coordinates of two normal sur-
faces to the axis of the device. The position of these two
surfaces can be taken arbitrarily.

B. Linear conductance in adiabatic approximation

The adiabatic approximation neglects the dynamical ef-

fects, which is equivalent to setting F̂ to zero. In this case,
the expression for the linear conductance becomes

G =� dr�� dr�� �̂zz
KS�r�,z;r�� ,z�� . �17�

We should point out that this expression also assumes a rap-
idly decaying kernel �vxc�r� /�n�r�� with the separation
�r−r��. It is remarkable that, after the inclusion of electronic
screening in ��, the expression for G remains formally iden-
tical to the one derived by Baranger and Stone22 for nonin-
teracting electrons.

We should also point out that the above expression as-
sumes a static conformation of the chain during the transport.
Deformations due to the charge flow are usually neglected in
molecular transport but they should be also taken into ac-
count. A possible way of including the polaronic effects in
our formalism would be to start from the results of Ref. 23,
which developed a mean-field treatment of the local polarons
for nonequilibrium problems. The polaron effects are ex-
pected to be small for the molecules studied here but become
important for longer chains.

In the rest of the paper, the conductance will be evaluated
using Eq. �17�, a choice that is largely dictated by practical
considerations. It amounts to implicitly assume that the dy-
namical effects are small, a hypothesis that we are unable to
support with rigorous arguments. A previous numerical study
found that dynamical effects play only a minor role,24 but
this study used only a local approximation for Edyn and con-
sidered small junctions, while here we focus on long molecu-
lar chains. We also leave the issue of nonlocality of the xc
potential to future investigations. Although very interesting,
these studies would be extremely challenging, particularly in
the case of the large systems that are considered in this paper.

For the nonlocal zz component of the conductivity tensor,
we can work with the following expression22,25

�zz�r,r�� = −
e2�3

8�m2�G�F
�r,r���z�

I�G�F
�r�,r� , �18�

where
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�G�F
�r,r�� = G�F+i��r,r�� − G�F−i��r,r�� , �19�

and G� is the Green’s function G�= ��−H�−1 of the Kohn-
Sham Hamiltonian describing the equilibrium of the entire
device: H=− �2

2m�2+Veff, Veff=vps+vHXC�n� with vps being
the ions’ pseudopotential and n being the electron density at
equilibrium. As pointed out in Refs. 22 and 25, �zz contains
additional terms but they cancel out after the integrations in
Eq. �17� and therefore can be neglected.

II. AN ANALYTIC EXPRESSION FOR THE TUNNELING
CONDUCTANCE

Consider a molecular device consisting of a long but finite
periodic molecular chain �of unit cell b� attached to infinite
metallic electrodes, like in Fig. 1. The orientation of the
chain is along the z axis. We assume that a self-consistent
Kohn-Sham calculation has been completed for the entire
device. The effective potential of the entire molecular device
Veff is decomposed into a perfectly periodic piece, V0, ex-
tending from −� to +�, and a difference �V=Veff−V0. The
periodic potential V0 is constructed by periodically repeating
the effective potential between −b /2 and b /2 at the middle
of the chain. Our main assumption is that the potential dif-
ference �V=Veff−V0 rapidly decays to zero inside the peri-
odic chain. In other words, we assume that, to a very high
degree, the effective potential inside the chain is periodic.
This assumption proved to be accurate for the systems we
studied so far, including the phenyl chains studied in this
paper.

We regard the self-consistent Kohn-Sham Hamiltonian of
the chain+leads as a periodic Hamiltonian,

H0 = −
�2

2m
�2 + V0�r�,V0�r + bez� = V0�r� , �20�

strongly perturbed by the potential �V. The effective Hamil-
tonian of the entire system is then

H = H0 + �VL�r� + �VR�r� , �21�

where we divided �V into left and right parts. We assume
that �VL,R decay fast to zero as we move away from the
contacts. We demonstrate in the following that, based on an
analytic expression for the Green’s function corresponding to
H0, we can derive an analytic, nonperturbative expression for
the Green’s function of the entire device. This is somewhat
complementary to the approach presented in Ref. 26, which
views the devices as periodic leads perturbed by the junc-
tions.

A. Computing the Green’s function for the periodic potential

Let us first consider the Green’s function G�
0= ��−H0�−1,

with � outside the spectrum of H0. To make the discussion
more transparent, we recall that in one dimension, the
Green’s function for a Hamiltonian of the form − �2

2m
d2

dx2

+V�x� can be conveniently written as

G��x,x�� = −
2m

�2

���x�����x��
W���,���

, �22�

with x�=min�x ,x��, x�=max�x ,x��, and W�� ,��=���
−���. Here, ���x� and ���x� are the solutions of the
Schrödinger equation

�−
�2

2m

d2

dx2 + V�x���x� = ���x� �23�

decaying to zero as x→−� and x→+�, respectively. For a
periodic system, the above expression reduces to

G��x,x�� = −
2m

�2

�−k�x���k�x��
W��−k,�k�

, �24�

where �k�x� is the Bloch function evaluated at the unique
complex k with Im�k��0 for which the complex band en-
ergy satisfies �k=�. To understand the simplicity of the above
expressions, one should compare them with the formal ex-
pansion

G��x,x�� = �
n

�n�x���n�x��
�n − �

, �25�

where ��n�x� ,�n� is the infinite sequence of eigenvectors and
corresponding eigenvalues of the Hamiltonian. As opposed
to Eq. �23�, in Eq. �25� one has to compute a large number of
wave functions and a truncation to n=N will generate O�N�
errors. The expression shown in Eq. �23� is generally valid
only in one dimension. We will show in the following, how-
ever, that for periodic Hamiltonians we can derive this ex-
pression using the Riemann structure of the bands. Since the
molecular chains in three dimensions still exhibit a Riemann
structure,27 such derivation allows us to generalize Eq. �24�
from strictly one dimension to molecular chains in three di-
mensions.

We start now the derivation. From Ref. 28, it is known
that the Bloch function ���x� and the band energy �� ��
=exp�ikb�� can be defined on a Riemann surface that looks
like in Fig. 2. This Riemann surface is made of a sequence of
unit disks that are cut and then reglued together as explained
in Ref. 28. Different disks correspond to different bands and
the physical, real k bands can be generated by evaluating ��

along the unit circles of each disk. Starting from the
eigenvalue-eigenvector expansion, where we use the stan-
dard normalization of the Bloch functions

� �

(a) (b)

FIG. 2. �Color online� The generic shape of the Riemann surface
of the bands for strictly 1D periodic systems �left� and for periodic
chains in three dimensions �right�. The figure also illustrates the
contour � used in the main text.
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1

b
�

−b/2

b/2

�n,−k�x��n,k�x�dx = 1, �26�

we can write

G��x,x�� =
1

2�
�

n
� dk

�n,−k�x��n,k�x��
� − �n,k

. �27�

By using the Riemann structure, we can combine the sum
over the band index and the integration over k into one single
integral over a contour � defined on the Riemann surface of
the bands �see Fig. 2�a��

G��x,x�� = �
�

d�

2�b�

�1/��x����x��
� − ��

. �28�

Now note that by changing the integration parameter from �
to 1 /� we interchange x and x�. Since � and 1 /� run over the
same path � we can write

G��x,x�� = �
�

d�

2�b�

�1/��x�����x��
� − ��

. �29�

We deform now the contour � towards the origin. Notice
that contour goes smoothly over the branch points since �
has components on each pair of Riemann surfaces connected
by the branch points. Also, when the contour nears the ori-
gin, the integrand goes to zero because �1/��x�����x�� con-
verges to ��x−x��, thanks to the correct ordering of x and x�.
Thus, the only singularity encountered during the deforma-
tion process is when �� brushes over � and from the Residue
theorem we obtain

G��x,x�� =
�1/��x�����x��

ib�����

. �30�

If we go back to the k representation, the above expression is
the same as the one written in Eq. �24� and this ends our
proof for the strictly one-dimensional �1D� case.

For periodic molecular chains in three dimensions, the
Riemann surface of the bands was discussed in Ref. 27, and
a typical shape is shown in Fig. 2�b�. The difference is that
now on each disk we can have more than two algebraic
branch points and the equation ��=� has an infinite sequence
���

of solutions. Starting from the expression

G��r,r� = �
�

d�

2�b�

�1/��r�����r��
�� − �

, �31�

where � is the contour shown in Fig. 2�b�, and deforming the
contour towards the origin and applying the Residue theorem
we obtain

G��x,x�� = �
�

�1/��
�r�����

�r��

ib�������

. �32�

Therefore, in the k representation, the Greens function for the
periodic potential V0 takes the form

G�
0�r,r�� = �

�

�−k�
�r���k�

�r��

i�k�k�

, �33�

where �k�� is the infinite sequence of wave numbers with
Im�k��0 such that �k�

=� and r� /r�=r /r� if z�z� and
r� /r�=r� /r otherwise.

B. Computing the Green’s function for the entire device

We can show in just a few steps why Eq. �33� is useful.
Indeed, the Green’s function for the entire device: G�= �H
−��−1 can be computed from the identity

G��r,r�� = G�
0�r,r�� +� dr�� dr�

	 G0�r,r��T��r�,r��G0�r�,r�� , �34�

where the T� matrix is given by

T� = �V + �VG��V . �35�

Given that �V=�VL+�VR, we can naturally decompose the
T matrix as

T� = TL + TR + TLR + TRL, �36�

where

TL = �VL + �VLG��VL,

TR = �VR + �VRG��VR,

TRL = �VRG��VL,

TLR = �VLG��VR. �37�

Now, the key observation is that, after the above decompo-
sition of T and because of the precise localization properties
of �VL and �VR, we can restrict the integrals over r� and r�
in Eq. �34� to either the left or the right leads. For example,
for the term involving TL, these integrals can be restricted to
the left lead. Furthermore, if we take r and r� near the
middle of the chain, we can tell what is the ordering between
r and r� and between r� and r� in the integral of Eq. �34�,
therefore, greatly simplifying the expressions for G�

0�r ,r��
and G�

0�r� ,r�� �see Eq. �33��. Given all these, the integrals
can be formally executed and the result is

G��r,r�� = G�
0�r,r�� + �

�,�

1

i�k�k�
i�k�k�

	 �TL
���k�

�r��k�
�r�� + TR

���−k�
�r��−k�

�r��

+ TLR
���k�

�r��−k�
�r�� + TRL

���−k�
�r��k�

�r��� ,

�38�

where

TL
�� =� dr� dr��−k�

�r�TL�r,r���−k�
�r�� ,

TR
�� =� dr� dr��k�

�r�TR�r,r���k�
�r�� ,
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TLR
�� =� dr� dr��−k�

�r�TLR�r,r���k�
�r�� ,

TRL
�� =� dr� dr��k�

�r�TRL�r,r���−k�
�r�� . �39�

This is the analytic expression of the Green’s function we
mentioned at the beginning. It holds true only for r and r�
inside the chain, but this is enough because the expression
for G given in Eq. �17� is invariant to the position of z and z�.
The “T” coefficients remain to be computed numerically, but
at this point we have obtained the exact dependence of G� on
the coordinates r and r�, which will allow us to compute the
conductivity tensor. Eq. �33� is also essential for deriving the
exact asymptotic form of the “T” coefficients in the limit of
long chains.12 Since H0 has no spectrum at �F, G�

0 behaves
smoothly when � crosses the real line and consequently �see
Eq. �19��

�G�F
�r,r�� = �

�,�

1

i�k�k�
i�k�k�

	 ��TL
���k�

�r��k�
�r�� + �TR

���−k�
�r��−k�

�r��

+ �TLR
���k�

�r��−k�
�r�� + �TRL

���−k�
�r��k�

�r��� ,

�40�

where �T stands for T�F+i�−T�F−i�.

C. Computing the tunneling conductance

Given our expression for the Green’s function �Eq. �38��,
it is evident that the integrals in Eq. �17� lead to generalized
Wronskians between different Bloch functions. The general-
ized Wronskian for two functions � and � is defined as

W��,�� =� dr���r�,z��z
J��r�,z� . �41�

We have the following remarkable property12 valid at arbi-
trary energy �

�W��k�
,�k�

� = 0

W��k�
,�−k�

� = −
2m

�2 i�k�k�
�k�,k�

, � �42�

where �k�� is the sequence of wave numbers corresponding
to the energy �. Applying the above rules, we obtain the
following expression for conductance

G = −
2e2

h
�
�,�

�TL
���TR

�� + �TLR
���TRL

��

i�k�k�
i�k�k�

. �43�

As opposed to the formula given in our previous work,12

the above expression is exact only for insulating chains. It
does not apply to metallic chains since we used the fact that
H0 does not have spectrum at the Fermi level. The matrix
elements of �T have simple and intuitive expressions

�TL
�� =� dr� dr�

	�−k�
�r��VL�r��G�F

�r,r���VL�r���−k�
�r��

�TR
�� =� dr� dr�

	�k�
�r��VR�r��G�F

�r,r���VR�r���k�
�r��

�TLR
�� =� dr� dr�

	 �−k�
�r��VL�r��G�F

�r,r���VR�r���k�
�r��

�TRL
�� =� dr� dr�

	 �k�
�r��VR�r��G�F

�r,r���VL�r���−k�
�r��

�44�

and they can all be expressed in terms of the spectral opera-
tor ��F

= 1
2�i �G�F

+ −G�F
−�. The diagonal ��F

�r ,r� of the spectral
operator gives the local density of states �LDOS�.

As discussed in Ref. 12, the �TRL
�� and �TLR

�� coefficients
become exponentially small compared to �TL

�� and �TR
�� as

the length of the chain is progressively increased. Further-
more, using the above explicit expressions of �T’s, one can
obtain the asymptotic expression of the tunneling conduc-
tance in just one step, a major simplification when compared
to our original derivation. This expression is given by

G�L� =
2e2

h
�
�,�

�L
�,��R

�,�

i�k�k�
i�k�k�

ei�k�+k��L, �45�

with

�L
�� = 2�� dr� dr��−k�

	r�,z +
L

2



	 �VL�r���F
�r,r���VL�r���−k�

	r�� ,z� +
L

2



�R
�� = 2�� dr� dr��k�

	r�,z −
L

2



	 �VL�r���F
�r,r���VL�r���k�

	r�� ,z� −
L

2

 .

�46�

In the limit L→�, the � coefficients become independent of
L. Strictly speaking, the asymptotic form of G�L� is deter-
mined by the wave number k with minimum imaginary com-
ponent. This is the case for the phenyl chains that we will
investigate in the next Section, or for alkyl chains that were
investigated in Ref. 13. However, for more complex molecu-
lar chains such as carbon nanotubes,29 there may be many
wave numbers with similar imaginary parts, in which case
we must consider more than one evanescent channel in Eq.
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�45�. We point out that Eq. �45� tells how the evanescent
tunnels interfere with each other during tunneling transport.

It is important to observe that computing the contact con-
ductance requires a converged density of states near the con-
tacts, which can be obtained from a standard supercell cal-
culation that includes large enough electrodes. The spectral
operator ��F

�r ,r�� can be computed in various ways and each
way can have its advantages and disadvantages. Provided
one can store a large number of orbitals, a straightforward
way consists in using the Kohn-Sham orbitals ��

��F
�r,r�� =

1

�
�

�

�

�� − �F�2 + �2��
��r����r�� , �47�

which leads to

�L
�� = �

�

2�

�� − �F�2 + �2� dr�−k�
	r�,z +

L

2

�VL�r���

��r�

	� dr���r��VL�r��−k�
	r�,z +

L

2

 �48�

and

�R
�� = �

�

2�

�� − �F�2 + �2� dr�k�
	r�,z −

L

2

�VR�r���

��r�

	� dr���r��VR�r��k�
	r�,z −

L

2

 . �49�

This is the way we actually compute the coefficients in
this paper and details about how we choose � will be given
later in the paper. An alternative way will be to compute the
spectral operator directly from the Green’s functions. This
involves inverting the large matrices �H−���−1, which can
be done iteratively and would not require saving large
amounts of data.

III. APPLICATION TO DEVICES INVOLVING
PHENYL CHAINS

In the following, we present an application to devices
made of phenyl chains attached to gold electrodes via amine
groups, like those investigated in Ref. 1. The complex band-
structure calculations of Ref. 15 reveal an evanescent chan-
nel with Im�k� much smaller than that of the rest of the
channels. Consequently, the tunneling conductance is deter-
mined by this evanescent channel and the expression for the
tunneling conductance simplifies to

G = �L�Re2ikL. �50�

This is to be compared to the classical expression G
=Gce

−�N. The tunneling coefficient � is related to k via �
=2 Im�k�b. The contact conductance Gc is given by the pre-
exponential factor in Eq. �50�. To be precise, let us write the
simplified expression of theta coefficients

�L =
2�

W��k,�−k�
� dr� dr�

	 �−k�r��VL�r���F
�r,r���VL�r���−k�r�� , �51�

with r and r� measured from the left end of the chain. Simi-
larly

�R =
2�

W��k,�−k�
� dr� dr�

	 �k�r��VR�r���F
�r,r���VR�r���k�r�� , �52�

with r and r� measured from the right end of the chain. We
have included the derivatives i�k�k into the � coefficients,
and then we expressed these derivatives using the general-
ized Wronskian. This particular way of writing the � coeffi-
cients is useful since the formulas become independent of the
normalization of the evanescent waves.

A. Computational details

We study three devices, containing two, three, and four
phenyl rings linked to gold electrodes via amine groups.
These three devices will be referred to as �a�, �b�, and �c�,
respectively. The corresponding atomic configurations are
shown in Fig. 3. Only the planar configuration for the phenyl
chain will be considered. The geometry of the planar phenyl
chain was build from the structure of biphenyl molecule re-
ported in Ref. 30. This reference reports an average C-C
bond length of 1.40 Å for the ring C atoms and a separation
between the phenyl rings of 1.49 Å. With this bond lengths,
the unit cell size of the chain is 4.315 Å in z direction. The
C-H bond length was fixed at 1.10 Å. The bond lengths
reported in Ref. 30 are weakly dependent on the functional
and basis set being used in the calculations.

The bond angles for the N atoms of the linking groups
were fixed in a tetrahedral configuration, except for the bond
with the Au atom. The N-C and N-H bond lengths were fixed
at 1.41 and 1.04 Å, respectively. The Au-N bond length was
fixed at 2.40 Å and the C-N-Au bond angle was fixed at
123°. Indicating by A, B, and C the stacking planes in the
�111� direction for fcc Au, the devices can be represented
schematically by

CBACBA-Au-NH2-�C6H4�N-NH2-Au-CBACBA. �53�

Ideally, the left �right� Au adatom would occupy a lattice site
of the C �A� stacking plane. Because of computational con-

FIG. 3. �Color online� Atomic configurations of the molecular
devices. Different rows correspond to different view angles.
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strains that require the chain to be oriented along the z direc-
tion and the surface of the electrode to be perpendicular to
the z direction, this ideal configuration cannot be exactly
satisfied, instead the adatoms are displaced towards the
chain’s plane by about 0.5 Å. Since we are interested here
mainly in illustrating the method, we did not investigate the
issue of how geometrical factors such as the accurate posi-
tion of the adatoms and distortions of the phenyl chain affect
the calculated conductance. These issues are, however, very
important for accurate quantitative comparisons with experi-
ment.

The lattice constant for the gold atoms in the leads was
fixed at the experimental value �thus the stacking planes are
spaced by 2.35 Å�. No surface reconstruction was consid-
ered. The system is periodically repeated in all three direc-
tion, but the calculations are restricted to the � point. In the
z direction, the periodically repeated system has 12 layers of
Au between two consecutive phenyl chains. For such elec-
trode size, we expect the density of states near the contacts to
be well converged. The lateral size of the supercell was cho-
sen so that 20 Au atoms are contained in each layer. Thus,
our computational supercell contains 242 Au atoms. In total,
there are 268, 278, and 288 atoms for devices �a�, �b�, and
�c�, respectively.

The equilibrium self-consistent Kohn-Sham calculations
were performed with a real-space pseudopotential code
based on finite differences. The same code was used for the
calculations reported in Ref. 13. We adopted a five-point
finite difference approximation for the kinetic-energy opera-
tor and used a uniform rectangular space grid with a spacing
of 0.1876 Å, sufficient for a good convergence of the elec-
tronic structure. This grid is commensurate with the unit cell
of the periodic phenyl chain, which is the reference system in
our transport calculations. We adopted the local density ap-
proximation for exchange and correlation using the
Perdew-Zunger31 interpolation of the numerical electron-gas
data of Ceperley and Alder.32 We used Troullier-Martin
norm-conserving pseudopotentials33 for all the atomic spe-
cies. The pseudopotentials for C and N atoms had distinct s
and p components and we took the p pseudopotential as the
local reference. Purely local pseudopotentials were used for
the H and Au atoms. In the latter case only the outermost s
electrons were treated explicitly.

Since the current calculations include only the s electrons
of Au, the calculated work function of the leads differs from
the experimental value. To address this problem, nonlinear
core corrections were proposed in Ref. 34. Even with these
corrections, the work function of fcc Au, as given by LDA
calculations, takes values between 6.28 and 6.70 eV, depend-
ing on the surface orientation.35 On the other hand, when the
d Au electrons are treated explicitly, the LDA yields35 work
functions close to experiment.36 In our calculation, with the
nonlinear core corrections implemented as in Ref. 34, we
find a work function of 6.6 eV for the Au electrodes, which
should be compared to an average experimental value of 5.4
eV for the work function of the Au �111� surface.36 While
this difference had insignificant consequences for the alkyl
chains,13 due to their large insulating gap and due to the
particularities of their complex band structure, for phenyl
chains the consequences will be more severe due to their

smaller insulating gap and due to the parabolic shape of the
complex band. More precisely, the Fermi level of the device
will be located extremely close to the edge of the valence
band of the insulating chain.

Since our main purpose here is to demonstrate our meth-
odology, we adopted a simple empirical approach to correct
this shortcoming: we modified the local pseudopotential of
Au atoms by adding a local core correction of the form
�nd�r� �Ry�, where nd�r� is the density of the frozen Au d
electrons. The work function for the Au �111� surface be-
comes 5.4 eV if the constant � is fixed at 0.37 Ry	Å3. Fig.
4 shows plots of the effective potential of a five-layer Au
slab for increasing values of �. Here we can see a monotonic
bending of the potential in the vacuum region, leading to a
reduction in the work function. We can also see a relatively
large change inside the d cores, but these changes have mi-
nor effects on the occupied electron density since they occur
well above the Fermi level. In addition, we do see a small
change in the potential in between the planes.

B. Electronic Structure

The results of the electronic structure calculations are
summarized in Fig. 5, which illustrates the local density of
states for the three devices, averaged in the xy plane:
�av�z ,��=����x ,y ,z�dxdy. The plots give a color map of
�av�z ,�� in the plane of energy � and of position z. The figure
was constructed from all Kohn-Sham orbitals used in the
transport calculations, their number being equal to the num-
ber of the occupied orbitals plus additional 110 unoccupied
orbitals �without counting the spin�. The Fermi level was
fixed at zero and is indicated by the red line. In these plots,
the conducting states of the leads and the band edges of the
insulating chain are quite visible. The Fermi level, which is
pinned by the continuum states of the leads, falls into the
insulating gap of the phenyl chain. One sees that the con-

FIG. 4. �Color online� Plots of the laterally averaged effective
potential for a five-layer Au slab corresponding to the increasing
values of the parameter �. The potential is referenced from the
Fermi energy and is expressed in eV. The arrow indicates the
change in the asymptotic part of Veff as � is increased. The vacuum
region around the slab is much larger than what is visible in the
picture.
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ducting states of the leads decay rapidly to zero inside the
phenyl chain, where the spectral gap becomes visible. The
gap is clean all the way to the first gold atoms of the elec-
trodes, showing no surface resonances. For energies inside
the spectral gap of the chain, �av�z ,�� does not show any
special features near the contacts. The insulating band gap
seen in Fig. 5 is larger for device �a� and is comparable for
devices �b� and �c�. The tunneling transport is sensitive to the
Fermi-level alignment relative to the edges of the insulating
gap. We point the reader to the Refs. 14 and 37, which give
an extended discussion of the band alignment in molecular
electronic devices and its effect on transport.

Fig. 6 illustrates the local part of the �V, confirming the
main assumption behind our formalism, namely that the po-
tential inside the insulating chain is, to a very high degree,
periodic and that �V is localized on the leads. Since we use
norm-conserving pseudopotentials, the nonlocal part of �V is
automatically localized on the leads.

The band structure of the periodic potential V0 for device
�c� is shown in Fig. 7. The real and complex structures are
similar to those reported in Ref. 15, at least for energies

below the vacuum. Above the vacuum, our calculation shows
additional bands originating from scattering states, which are
absent in the tight-binding calculations of Ref. 15.

C. Conductance: Numerical results

We would like to comment first on the numerical advan-
tages brought in by our formalism. Due to the large super-
cells involved in these kinds of calculations, very often trans-
port calculations for long molecular chains are carried out in
a reduced basis set representation of the Hilbert space of the
electron states. This can be problematic because the basis set
functions are usually localized and it is not always clear how
well are the scattering states represented by a small number
of such functions. When considering experimental values for
G that are between 10−3 and 10−6G0 or even smaller, one can
easily see that there is very little margin for errors. In our
calculations, all the quantities involved in the formula for G
are computed on the same grid used for the self-consistent
calculation. Since the asymptotic expression of G is virtually
exact for long chains, the analytic formula of Eq. �45� allows

FIG. 5. �Color online� The xy planar average of the LDOS for the three devices, shown as a density plot with energy �in eV� on the
vertical axis and position along the device on the horizontal axis. The atomic structures shown on the top are aligned with the graphs below
them.

FIG. 6. �Color online� �a� The atomic configuration of device
�c�. �b� An isosurface of �V. �c� The xy planar average of �V �in
eV� as a function of position along the device. The three panels are
aligned.

FIG. 7. �Color online� Real �right panel� and complex �left
panel� band structures corresponding to the periodic potential V0 for
device �c�. Only the complex band with smallest Im�k� is shown.
The Fermi level of the device was set to zero. The energy unit is eV
and the unit for Im�k� is Å−1. The arrows indicate the energy bands,
which determine the asymptotic value of the tunneling conductance.

THEORY OF TUNNELING TRANSPORT IN PERIODIC CHAINS PHYSICAL REVIEW B 80, 035124 �2009�

035124-9



us to compute G without truncating our Hilbert space.
We computed the transmission coefficient of our devices

by evaluating Eq. �50� at several energies � within the insu-
lating gap and the results are reported in Fig. 8 as a function
of �-�F. We should point out that the computed values be-
come less accurate for energies closer to the band edges. The
calculated transmission of the device �a� looks different from
the others, mainly because of its larger insulating gap. The
linear conductance of the three devices, as derived from
these calculations, are G=1.5	10−3, 1.5	10−3, and 4.3
	10−4G0, respectively. The � coefficient, computed as
2b Im�kF�, is equal to 1.15 for device �a� and 0.98 for the
other two devices. It appears that only the last two devices
reached the asymptotic tunneling regime. However, the situ-
ation is highly dependent on the position of the Fermi level.
For example, � would be the same for the three devices if the
Fermi level would move away from the valence-band edge
of the phenyl chain by 0.2 eV. Since the values of G are
highly sensitive to the band alignment, we should be cau-
tious when comparing the theoretical predictions with the
experimental values. In any case, the predicted G for device
�a� is very close to the value measured in Ref. 1. The pre-
dicted value of device �b� is 8.3 times larger than the experi-
mental value reported in Ref. 1. No experimental value has
been reported for the device �c�. It is interesting to remark
that a previous study16 on a device consisting of a single
phenyl molecule linked to gold electrodes via amine groups
predicted a theoretical G that is seven times larger than the
measured experimental value. The same reference pointed
out that the calculated DFT conductance would become com-
parable to the experimental value if the Fermi level was lo-
cated 0.5 eV further away from the valence band. We also
see from our data that a shift in �F by 0.5 eV would bring the
theoretical prediction for both devices �a� and �b� in line with
the experimental values.

We now describe how we computed the conductance. The
complex band structure corresponding to V0 varies slightly
when different devices are considered. Overall, the band
structure for V0 is similar to that reported in Ref. 15 for the
infinite, isolated phenyl chains, suggesting that the main dif-
ference between V0 and the effective potential of the infinite,

isolated chain is a rigid shift. Given the particular complex
band structure of the phenyl chains, the tunneling conduc-
tance is determined by just one complex band, the one with
the smallest Im�k�. This complex band is shown in Fig. 7 for
device �c�. It was obtained by varying continuously Im�k�
from 0 to its maximum value, while keeping Re�k�=0. For
each complex value of k, the spectrum of the k-dependent
Hamiltonian

Hk = − ��− ikez�2 + V0 + e−ik�z−z��Vnon−loc�r,r�� , �54�

with periodic boundary conditions at z= b /2, was calcu-
lated and its eigenvalues ordered according to their real
parts: Re��1k��Re��2k�� . . .. We focus, in particular, on the
14th and 15th eigenvalues �14k and �15k �which take real val-
ues, see Fig. 7� and their corresponding evanescent Bloch
functions �14k and �15k. When Im�k�=0, �14k and �15k coin-
cide, respectively, with the top of the valence bands and with
the bottom of the conduction bands of V0. By increasing
Im�k�, the two eigenvalues move towards each other until
they become degenerate when k reaches the branch point at
Im�k�=0.15 Å−1. At different values of Im�k�, we evaluated
Eq. �45� for both �=�14k and �=�15k, using the corresponding
evanescent Bloch functions �14k and �15k to compute the �
coefficients via Eqs. �46� and �52�. The spectral kernel was
computed directly from the Kohn-Sham orbitals of the full
device as previously explained. The coefficient � was fixed
at 0.1 eV. This value is about one order of magnitude larger
than the average energy-level spacing of the Kohn-Sham or-
bitals near the Fermi energy.

D. Insight into the transport properties of phenyl chains

The analytic result of Eqs. �45�, �46�, and �52� allows us
to point several key aspects of the tunneling transport of our
devices. Since the formulas involve overlap integrals, the
new insight is obtained by looking at each physical quantity
entering in the expressions of the � coefficients.

A plot of the local density of states �i.e. the diagonal part
of the spectral operator� was already given in Fig. 5 and a
plot of ��V� was given in Fig. 6. Figure 9 shows a plot of the
evanescent Bloch solutions of the periodic Hamiltonian with
potential V0 for device �c�, evaluated at the Fermi level.
These functions are properties of the periodic Hamiltonian
only, but their spatial decay is fixed by the � coefficient,
which depends on the level alignment as discussed earlier.
The contact conductance Gc depends on the overlap of these
evanescent functions with other physical quantities, and a
plot like the one in Fig. 9 allows us to assess quantitatively
the contact region that is relevant to tunneling transport.

A main factor in our transport calculation is the overlap
between the evanescent Bloch function ��k�r� and �VL/R,
i.e. the quantity

�L/R�r� = ��k�r��VL/R�r� , �55�

which is exponentially localized at the left/right contacts. As
a consequence the spectral operator in Eq. �47� is only
needed in a region near the contacts. A plot of �L/R�r� for
device �c� is shown in Fig. 10. This plot allows us to under-
stand how the different Au layers contribute to the contact

FIG. 8. �Color online� Plots of the transmission as function of
energy; green, blue, and red colors are used for devices �a�, �b�, and
�c�, respectively.
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conductance Gc.
13 From the data we extract that the contact

Au atom and the next two gold layers contribute to �L/R�r�
by about 75%, while the remaining 25% comes from the
remaining layers. This information tells us that the conduc-
tance of our devices is primarily determined by the first three
layers of Au atoms, an information that could be useful when
designing molecular circuits based on phenyls. The spatial
spread of �L/R�r� along the device seen in Fig. 10 is more
extended than the one found for alkyl-based devices. This
implies that the conductance of the present devices is more
sensitive to the geometrical and chemical configuration of
the contact, or to the orientation of the molecule relative to
the molecular wires.

IV. CONCLUSIONS

Based on our calculations, it appears that only devices �b�
and �c� reached the tunneling regime. The effective potential
in the middle of the device �a� is distorted by the contacts
and differs from that of the free standing chains. Therefore,
we will restrict our conclusions to the devices �b� and �c�.
For device �b�, the calculated conductance resulted in a value
8.3 times larger than the experimental value reported in Ref.
1. Our finding is in line the previous DFT calculations and
like these studies we find that the disagreement is due to
wrong molecular level alignment.

As opposed to the devices involving alkyl chains, for phe-
nyl chains we found that the transport calculations are ex-

tremely sensitive to band alignment. This is prompted in the
first place by the relatively small insulating gap of the phenyl
chain but also by the fact that LDA places the Fermi level
close to the edge of the valence band of the phenyl chain. For
this reason, kF is located in the rapidly varying region of the
complex band and small variations in �F lead to large varia-
tions in conductance.

The analytic expression for the tunneling conductance al-
lowed us to probe several transport characteristics of the de-
vices. We showed that the contact conductance is exponen-
tially localized near the contacts and we were able to
describe quantitatively this localization. Since the evanescent
conducting channels decay slower than for the case of alkyl
devices, the contact conductance is less localized and the
tunneling characteristics of the phenyl-based devices are pre-
dicted to be more sensitive to the particularities of the elec-
trodes when compared to devices involving alkyl chains.
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